## Problem 1.65

Two workers pull horizontally on a heavy box, but one pulls twice as hard as the other. The larger pull is directed at $25.0^{\circ}$ west of north, and the resultant of these two pulls is 460.0 N directly northward. Use vector components to find the magnitude of each of these pulls and the direction of the smaller pull.

## Solution

Let $\mathbf{F}_{1}$ and $\mathbf{F}_{2}$ be the two forces, and let the first one be larger in magnitude: $F_{1}=2 F_{2}$.


Draw the triangle corresponding to the vector magnitudes.


Use the law of cosines.

$$
F_{2}^{2}=F_{1}^{2}+460^{2}-2\left(F_{1}\right)(460) \cos 25^{\circ}
$$

Replace $F_{1}$ with $2 F_{2}$.

$$
F_{2}^{2}=\left(2 F_{2}\right)^{2}+460^{2}-2\left(2 F_{2}\right)(460) \cos 25^{\circ}
$$

Solve for $F_{2}$.

$$
0=3 F_{2}^{2}-1840\left(\cos 25^{\circ}\right) F_{2}+460^{2}
$$

Use the quadratic formula.

$$
F_{2}=\frac{1840\left(\cos 25^{\circ}\right) \pm \sqrt{\left[1840\left(\cos 25^{\circ}\right)\right]^{2}-4(3)\left(460^{2}\right)}}{2(3)} \approx\{393,179\}
$$

Determine the direction of the weaker force by finding $\alpha$ in the figure below.


Use the law of cosines again for the triangle on the right.

$$
F_{1}^{2}=F_{2}^{2}+460^{2}-2\left(F_{2}\right)(460) \cos \alpha
$$

Solve for $\alpha$.

$$
\begin{gathered}
\cos \alpha=\frac{F_{2}^{2}+460^{2}-F_{1}^{2}}{2\left(F_{2}\right)(460)} \\
\alpha=\cos ^{-1}\left[\frac{F_{2}^{2}+460^{2}-F_{1}^{2}}{2\left(F_{2}\right)(460)}\right]
\end{gathered}
$$

Therefore, if $F_{2} \approx 179 \mathrm{~N}$, then $F_{1}=2 F_{2} \approx 359 \mathrm{~N}$ and $\alpha \approx 45.8^{\circ}$; if $F_{2} \approx 393 \mathrm{~N}$, then $F_{1}=2 F_{2} \approx 786 \mathrm{~N}$ and $\alpha \approx 134^{\circ}$. The figure below illustrates this second case more accurately.


